Catálogo
Bilbliográfico

Effect of phytochrome-mediated red light signaling on phosphorus uptake and accumulation in rice Yasihito Sakuraba, Suichi Yanagisawa

Por: Tipo de material: TextoTextoDetalles de publicación: Estados Unidos de América. Universidad de California California: 2020 (Vol. 66, No. 5)Descripción: 745-754, 9 pág 27.6 * 20.5 cmTítulos uniformes:
  • Efecto de la señalización de luz roja mediada por fitocromos en la absorción y acumulación de fósforo en el arroz
Tema(s): Recursos en línea: En: Soil Science and Plant NutritionResumen: Phosphorus (P) is a macronutrient essential for plant growth and productivity. Plants uptake P as inorganic phosphate (Pi); however, in the natural ecosystem, Pi availability is frequently a severe limiting factor for plant growth. Thus, plants have evolved several mechanisms, such as the expression of Pi starvation-responsive genes, to adapt to Pi deficient conditions. Although we recently reported that phytochrome (Phy)-mediated red light signaling promotes Pi uptake by increasing expression levels of such genes in the model plant Arabidopsis, it remains elusive whether a similar mechanism exists in agricultural crops. In the present study, we analyzed the effects of red light signaling on Pi uptake in rice (Oryza sativa L.) using osphyA and osphyB single mutants, and the osphyA osphyB double mutant. Unlike osphyA seedlings, osphyB seedlings showed a reduction in Pi uptake and Pi content. Furthermore, illumination of wild-type seedlings with red light significantly promoted Pi uptake, whereas illumination with blue or far-red light did not. The osphyB mutant showed reduced expression levels of several Pi starvation-responsive genes including Pi transporter genes. Additionally, these phenotypes of osphyB knockout mutants were much more evident under Pi deficient conditions than under Pi sufficient conditions. Moreover, red light promoted Pi uptake in seedlings of other plant species including broccoli (Brassica oleracea L. var. italica) and lettuce (Latuca sativa L.). These results suggest that OsPhyB-mediated red light signaling promotes Pi uptake in rice by up-regulating the expression of Pi starvation response-associated genes, and this phenomenon may be conserved in a wide range of plant species.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura topográfica Info Vol Copia número Estado Fecha de vencimiento Código de barras
Recursos Continuos - Revistas Recursos Continuos - Revistas Biblioteca Central Campus Universitario Hemeroteca Hemeroteca AGRONOMIA (Navegar estantería(Abre debajo)) Año 2020 Vol. 66 Núm. 5 Ej: 1 En Procesos Técnicos R003163

Incluye referencias bibliográficas, imágenes y gráficas.

Phosphorus (P) is a macronutrient essential for plant growth and productivity. Plants uptake P as inorganic phosphate (Pi); however, in the natural ecosystem, Pi availability is frequently a severe limiting factor for plant growth. Thus, plants have evolved several mechanisms, such as the expression of Pi starvation-responsive genes, to adapt to Pi deficient conditions. Although we recently reported that phytochrome (Phy)-mediated red light signaling promotes Pi uptake by increasing expression levels of such genes in the model plant Arabidopsis, it remains elusive whether a similar mechanism exists in agricultural crops. In the present study, we analyzed the effects of red light signaling on Pi uptake in rice (Oryza sativa L.) using osphyA and osphyB single mutants, and the osphyA osphyB double mutant. Unlike osphyA seedlings, osphyB seedlings showed a reduction in Pi uptake and Pi content. Furthermore, illumination of wild-type seedlings with red light significantly promoted Pi uptake, whereas illumination with blue or far-red light did not. The osphyB mutant showed reduced expression levels of several Pi starvation-responsive genes including Pi transporter genes. Additionally, these phenotypes of osphyB knockout mutants were much more evident under Pi deficient conditions than under Pi sufficient conditions. Moreover, red light promoted Pi uptake in seedlings of other plant species including broccoli (Brassica oleracea L. var. italica) and lettuce (Latuca sativa L.). These results suggest that OsPhyB-mediated red light signaling promotes Pi uptake in rice by up-regulating the expression of Pi starvation response-associated genes, and this phenomenon may be conserved in a wide range of plant species.

No hay comentarios en este titulo.

para colocar un comentario.